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After a long decline in the pace of antibiotics discovery in the 
1990s, natural products are again at the center of attention, 
as exemplified by the recent discoveries of novel classes of 

natural product drugs1–4. The key condition for enabling the renais-
sance of the natural product research is a turn from the current 
one-off process of analyzing natural products to high-throughput 
discovery pipelines. Thus, in addition to development of new 
experimental technologies, future studies of natural products will 
also require new computational approaches5–7. The recent launch of 
the GNPS molecular networking infrastructure8 brought together 
over a hundred laboratories that have already generated an unprec-
edented amount of publicly available mass spectra of natural 
products. However, to transform natural product discovery into a 
high-throughput technology and to fully realize the promise of the 
GNPS project, new algorithms for natural product discovery are 
needed6,9,10. Indeed, although spectra in the GNPS molecular net-
work represent a gold mine for future discoveries, their interpreta-
tion remains a bottleneck.

In this paper we focus on PNPs, which are produced by two types 
of biosynthetic machineries: nonribosomal peptide (NRP) syn-
thetases11 and ribosomally synthesized and post-translationally mod-
ified peptide (RiPP) synthetases12, which synthesize NRPs and RiPPs, 
respectively. NRPs are not directly inscribed in genomes but are made 
by large multimodular NRP synthetases using nonribosomal code. 
Although RiPPs are encoded in the genome, the RiPP-encoding 
genes are often short, making it difficult to annotate them13.

Development of reference spectral libraries of tandem mass spec-
tra (MS/MS) has enabled identification of metabolites by searching 
spectra against these libraries as an alternative to the searches of 
candidate molecules in chemical databases14. However, in the case 
of PNPs, such libraries are small because, until recently, there was 
no centralized effort to annotate spectra of various PNPs. Although 
this situation had changed with the release of GNPS8, the utility of 
data in this network needs to be enhanced with additional tools that 

can be applied to large extract collections in therapeutic discov-
ery programs for identification of the previously described natural 
products and their variants. Such dereplication tools should be fast 
so that they can be applied to all GNPS spectra.

Natural product researchers face the challenge of maximizing the 
discovery of new compounds while minimizing the reevaluation of 
known compounds. The process of using the information about 
the chemical structure of a previously characterized compound to 
identify this compound in an experimental sample (without hav-
ing to repeat the entire isolation and structure-determination pro-
cess) is called dereplication15. Another challenge is finding variants 
of known compounds because those variants are sometimes more 
effective in clinical applications. For example, caspofungin is one of 
many examples of a variant PNP that proved to be effective in clini-
cal applications16. Although many low-abundance variants of PNPs 
have been reported in the last two decades, it is difficult to identify 
all variants without dedicated computational tools. In this paper, we 
present a dereplication algorithm that identified hundreds of previ-
ously unknown variant PNPs.

In the case of PNPs, MS-based dereplication refers to match-
ing MS/MS data against PNPs in a chemical library such as 
AntiMarin17. Similarly to database search tools in proteomics (for 
example, Sequest18), dereplication algorithms search for peptide-
spectrum matches (PSMs) and score them based on similarities 
between theoretical spectra derived from peptides in the chemical 
library and experimental tandem spectra. The matched peptide that 
forms a statistically significant PSM with the highest score (against a 
given spectrum) is reported as a putative annotation. In many cases, 
a PNP in the new sample is absent in the database of known PNPs, 
but its variant is present in this database (for example, with a substi-
tution, a modification or an adduct). Identification of an unknown 
PNP from its known variants is called the variable dereplication (as 
opposed to the standard dereplication when a PNP is present in the 
chemical database).
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Peptidic natural products (PNPs) are widely used compounds that include many antibiotics and a variety of other bioactive 
peptides. Although recent breakthroughs in PNP discovery raised the challenge of developing new algorithms for their analysis, 
identification of PNPs via database search of tandem mass spectra remains an open problem. To address this problem, natu-
ral product researchers use dereplication strategies that identify known PNPs and lead to the discovery of new ones, even in 
cases when the reference spectra are not present in existing spectral libraries. DEREPLICATOR is a new dereplication algorithm 
that enables high-throughput PNP identification and that is compatible with large-scale mass-spectrometry-based screening 
platforms for natural product discovery. After searching nearly one hundred million tandem mass spectra in the Global Natural 
Products Social (GNPS) molecular networking infrastructure, DEREPLICATOR identified an order of magnitude more PNPs (and 
their new variants) than any previous dereplication efforts. 
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This description hides many details that make PNP identification 
difficult. First, in difference from peptides analyzed in traditional 
proteomics (that are assembled from 20 proteinogenic amino acids), 
PNPs are assembled from hundreds of amino acids. Second, PNP 
architectures are not limited to linear peptides but include cyclic, 
branched-cyclic and even more complex configurations. Third, 
although there was large effort invested in analyzing statistical sig-
nificance of PSMs in traditional proteomics, methods for evaluating 
statistical significance of PNPs are still in infancy. Fourth, search 
for substituted and modified variants of known PNPs requires  
complex, blind database searches19 because the set of possible sub-
stitutions and modifications is not known in advance.

Previously developed dereplication approaches include NRP-
Dereplication20 algorithm for cyclic peptides and informatic 
search algorithm for natural products (iSNAP)21 algorithm for 
both cyclic and branch-cyclic peptides. However, in differ-
ence from NRP-Dereplication, iSNAP does not perform variable 
dereplication. DEREPLICATOR overcame the limitations of both 
NRP-Dereplication (cyclic peptides only) and iSNAP (standard 
dereplication only) and further addressed the problem of evaluat-
ing the statistical significance (P values) of PSMs formed by PNPs. 
By applying spectral networks22,23 to perform variable dereplication, 
it enabled to our knowledge the first high-throughput PNP iden-
tification effort in the field of natural products that resulted in the 
discovery of many new variant PNPs.

RESULTS
Outline of the DEREPLICATOR algorithm
In Figure 1 and Supplementary Figure 1, we illustrate the 
DEREPLICATOR pipeline, which includes the following steps 
described in the Online Methods: (i) generating decoy database of 
PNPs, (ii) constructing theoretical spectra for all PNPs in the data-
base, (iii) generating and scoring PSMs, (vi) computing P values  
of PSMs and generating the set of statistically significant PSMs,  
(v) computing false discovery rate (FDR), and (vi) enlarging  
the set of found PSMs through variable dereplication via  
spectral networks.

The concept of spectral networks22 (also known as molecular 
networks24 when applied to metabolites and natural products) was 
introduced to reveal spectra of related peptides in a proteomic data 
set without knowing what these peptides are. Nodes in a spectral 
network correspond to spectra, and edges connect spectra that are 
generated from related peptides, for example, peptides differing by 
a single substitution, modification (such as oxidation, acetylation, 
methylation, etc.), or adduct (such as proton, sodium, potassium, 
etc.). Spectral networks enable variable dereplication of new vari-
ants of known PNPs via propagation of PSMs through a spectral 
network25 and allow one to generate a hypothesis regarding the 
nature of the structural relatedness of peptides represented by the 
spectra within the network. Spectral networks are well suited for 
analyzing PNPs because most PNPs form families of related pep-
tides through biosynthetic promiscuity, incomplete biosynthetic 
processing, non-enzymatic reactions or mutations between differ-
ent species (Supplementary Results, Supplementary Fig. 2).

Benchmarking DEREPLICATOR
To benchmark DEREPLICATOR, we used the AntiMarin data-
base17 to dereplicate all spectra from the following GNPS data sets: 
SpectraGNPS (all spectra in GNPS), Spectra4 (four low-resolution 
GNPS data sets from S. roseosporus, Bacillus and Pseudomonas 
cultures, and two wild-type isolates), SpectraHigh (high-resolution 
GNPS data sets SpectraFungi, SpectraActi , SpectraPseu and SpectraCyan 
containing spectra from Fungi, Actinomycetales, Pseudomonas 
and Cyanobacteria, respectively), and SpectraActi36 (36 subsets of the 
SpectraActi data set that contain bacterial extracts from 36 strains 
with known genome). Details of these data sets and the number of 

PNPs in various chemical databases are in Supplementary Tables 1 
and 2, and Supplementary Figure 3.

Analyzing statistical significance of identified PNPs
The crucial element of any MS/MS database search is analysis of sta-
tistical significance by computing P values (for individual PSMs) and 
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Figure 1 | DEREPLICATOR pipeline. DEREPLICATOR pipeline includes the 
following steps: (i) generating decoy database of PNPs (ii) constructing 
theoretical spectra for all PNPs in the database, (iii) generating and  
scoring PSMs, (vi) computing P values of PSMs and generating the  
set of statistically significant PSMs, (v) computing false discovery rate, 
and (vi) enlarging the set of found PSMs through variable dereplication via 
spectral networks. Various steps related to target and decoy databases  
are shown in green and red boxes, respectively. Six peptides identified in 
target database and two peptides identified in decoy database are shown  
in green and red, respectively.
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FDRs (for the entire set of identified PSMs). To compute P values, 
DEREPLICATOR uses the MS-DPR (mass spectrometry direct prob-
ability redistribution) algorithm26, motivated by a similar approach 
in particle physics. To compute the FDR, DEREPLICATOR uses 
the concept of decoy database and extends it to nonlinear peptides 
(Online Methods). We note that FDR in proteomics is estimated as 
the ratio of the numbers of identified PSMs (rather than peptides) in 
the decoy database and the target database. In this paper, we took a 
more conservative approach by reporting the ratio of the number of 
identified unique peptides in the decoy and the target database.

We analyzed the distribution of P values of PSMs and pep-
tides identified by DEREPLICATOR in the search of Spectra4  
and SpectraGNPS against the target AntiMarin database and decoy 
database of the same size (Fig. 2). For SpectraGNPS data set and  
P value threshold of 10−10, DEREPLICATOR identified 8,622 PSMs 
(150 unique peptides) in the target database and 22 PSMs (11 unique 
peptides) in the decoy database. This translates into 0.2% FDR at the 
PSM level and 7.3% FDR at the peptide level. The P value cutoff  
of 10−10 was two orders of magnitude more stringent than the  
median P value of the manually curated PNP spectra in the GNPS 
spectral library8, the reference library of all annotated MS/MS data 
in GNPS. We thus project that hundreds of PNPs reported below 
represent a fraction of PNPs whose reference spectra have been 
already deposited to GNPS.

Although none of the decoy PSMs in the Spectra4 data set had a 
P value below 10−11 (estimated FDR is zero), there were 374 PSMs in 
the target database with P values varying from 10−11 to 10−27. These 
PSMs correspond to 37 unique PNPs (Table 1). We found only two 
PSMs in the decoy database with P values below 10−8 as compared 
to 904 PSM (and 78 peptides) in the target database with P values 
below 10−8. Although 78 identified PNPs were also represented by 
reliable PSMs with low FDR of 0.2%, we limited analysis to even 
more statistically significant 37 dereplicated peptides in Table 1 and 
conducted a literature search for all these peptides.

Validation of DEREPLICATOR results
Using the conservative FDR cutoff, we validated the results of 
DEREPLICATOR by (i) comparing them with results reported 

in literature, (ii) comparing them with available spectra from  
known PNPs, and (iii) analyzing the biosynthetic capacity of the 
producing organisms.

In Table 1, we list 37 PNPs (13 cyclic and 24 branch cyclic) from 
PSMs identified by DEREPLICATOR with P values below 10−11. To 
validate them, we surveyed the papers reporting spectra of these 
PNPs. As spectra for most of these PNPs are only available as images 
in journal papers (rather than computer files), we were limited  
to comparing these images with spectra in Spectra4 data set by eye. 
For 35 of 37 PNPs, an MS/MS of the peptide had been published  
in the literature, and a visual comparison confirmed that the  
dereplicated PNPs were correct.

We further analyzed the species that gave rise to the PNPs in 
Table 1. If these species were evolutionary close to the PNP-
producing species reported in the published papers, we considered 
that as additional evidence supporting the dereplicated PNPs. For 
31 of 37 PNPs, information about the PNP producer was available, 
and for all of them, the referenced paper reported that these PNPs 
are produced by an evolutionary close bacterial species. Overall, 36 
of 37 PNPs in Table 1 are supported by at least one of these two 
tests. Presence of multiple PNPs from the same PNP family in Table 
1 (for example, eight variants of surfactin) was additional evidence 
that these PNPs were correctly identified.

To further evaluate PSMs identified by DEREPLICATOR, we 
compared spectra for these PSMs to the annotated spectra in the 
GNPS spectral library8 that currently contains only 81 PNPs and 
includes only 21 of 37 PNPs listed in Table 1. Moreover, only 18 
of these 21 PNP in GNPS spectral library had spectra generated 
with the same type of instrument (linear trap quadrupole, Fourier 
transform ion cyclotron resonance; LTQ-FTICR) as the spectra in 
Spectra4 data set, and all these 18 spectra in GNPS turned out to be 
similar to spectra in the Spectra4 data set, with cosine values varying 
from 0.4 to 0.8 (cosine value for spectra from different peptides is 
expected to be close to 0).

Dereplication of the entire GNPS molecular network
As GNPS is often missing information on whether a specific spec-
tral data set was acquired using a low- or high-resolution instrument, 
we analyzed all spectra in GNPS in the low-resolution mode. For 
SpectraGNPS data set and the P value threshold 10−11, DEREPLICATOR 
identified 4,892 PSMs (129 peptides) in the target database and 8 PSMs 
(3 peptides) in the decoy database. In Supplementary Table 3, we list 
the 129 identified PNPs (71 cyclic, 41 branch cyclic and 17 linear) that 
include 47 peptides, 81 lipopeptides and a hybrid polyketide-peptide. 
When we used the spectral network for variable dereplication, the 
number of identified PSMs for the entire GNPS data set (at P value 
10−11) increased to 69,995 (see Supplementary Fig. 2 for examples). 
About 75% of PNPs from AntiMarin listed in Supplementary Table 3  
have variant PNPs (as revealed by neighbors in the GNPS molecular 
network), bringing to light a remarkable diversity of previously unre-
ported PNP variants (Supplementary Table 4).

To further evaluate the PNPs found via variable dereplication, 
we analyzed the mass shifts of PNP variants from Supplementary 
Table 4 as compared to known PNPs from Supplementary Table 3.  
If the new PNP variants are correct, then we expect them to have 
many characteristic mass shifts such as 14 Da, a change of CH2  
(ref. 27). The histogram of mass shifts of PNP variants (Supplementary  
Fig. 4) illustrates that a large fraction of them (~40%) have  
characteristic mass shifts of 14 Da, 17 Da, 18 Da, 28 Da, 30 Da, 42 
Da and 113 Da. The spectral network of stenothricins illustrates how 
analysis of spectral networks and characteristic mass shifts revealed 
new members of the PNP families (Supplementary Fig. 2). Indeed, 
the mass shift 7 Da connecting the three known stenothricins, also 
connects stenothricin IV with a node 573.808 Da. As the spectra  
in this connected component originate from doubly charged ions,  
7 Da corresponds to the characteristic mass shift of 14 Da.
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Figure 2 | Number of PSMs and peptides identified by DEREPLICATOR. 
(a,b) For each x (shown as P value along the x axis), the plots show the 
number of identified PSMs or peptides with P values below x. Number of 
PSMs (a) and peptides (b) for the target AntiMarin and decoy databases 
in the search of Spectra4. 1,787 PSMs and 180 unique PNPs with P value 
below 10−13 were dereplicated via spectral networks. (c,d) Number of PSMs 
(c) and peptides (d) for the target AntiMarin and decoy databases in the 
search of SpectraGNPS. All searches were performed with the precursor mass 
tolerance 0.05 Da.
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Table 1 | 37 PNPs (in the increasing order of P values) identified by DEREPLICATOR in the search of Spectra4 against AntiMarin 
database for P value threshold 10−11

# Organism
GNPS 

identifier PNP Structure Category P value
SPC 

score
#  

peaks
#  

bonds
#  

variants

Library 
search 

(instrument) Producer/ref.

 1 B. clausii 78552 Bacitracin A Bcyc Peptide 2.0 × 10−26 25 100 11 1 n/a Bacillus39

 2 P. tolaasii CH36 78552 Tolaasin I Bcyc Lipo 3.4 × 10−22 21 76 18 1 qTof P. tolaasii40/41

 3 P. tolaasii CH36 78552 Tolaasin B Bcyc Lipo 2.5 × 10−21 22 149 18 1 qTof P. tolaasii41/41

 4 S. roseosporus 78577 Daptomycin Bcyc Lipo 6.3 × 10−19 25 125 13 1 0.55 (LTQ) S. roseosporus27

 5 B. subtilis NCIB 3610 78552 Surfactin B Cyc Lipo 1.8 × 10−18 18 70 7 3 0.77 (LTQ) B. subtilis42

 6 Streptomyces 78557 Surfactin variant Cyc Lipo 5.6 × 10−18 18 149 7 1 0.75 (LTQ) -/42

 7 P. tolaasii CH36 78552 Tolaasin C Bcyc Lipo 1.9 × 10−17 15 155 19 1 n/a P. tolaasii41/41

 8 B. subtilis subsp. 
spizizenii

78552 Mycosubtilin III Cyc Lipo 1.4 × 10−16 14 75 8 1 n/a B. subtilis43/-

 9 S. roseosporus 78577 Stenothricin IV Bcyc Lipo 1.7 × 10−16 24 90 9 4 0.53 (LTQ) Streptomyces44/27

10 B. subtilis NCIB 3610 78552 Surfactin variant Cyc Lipo 3.4 × 10−16 19 70 9 3 0.77 (LTQ) B. subtilis42

11 B. subtilis NCIB 3610 78552 Plipastatin 
variant

Bcyc Lipo 3.9 × 10−16 24 115 10 1 n/a B. subtilis/45

12 Streptomyces 78557 Glumamycin Bcyc Lipo 1.2 × 10−15 25 90 12 2 n/a -/-
13 B. subtilis NCIB 3610 78552 Surfactin A1 Cyc Lipo 4.5 × 10−15 15 70 7 1 0.77 (LTQ) B. subtilis42

14 Streptomyces 78557 Valinomycin Cyc Peptide 6.3 × 10−15 6 75 6 12 0.71 (hFT) -/46

15 B. subtilis NCIB 3610 78552 Plipastatin 
variant

Bcyc Lipo 1.2 × 10−14 26 115 10 1 n/a B. subtilis45/45

16 B. subtilis NCIB 3610 78552 Surfactin D Cyc Lipo 2.3 × 10−14 17 75 7 3 n/a B. subtilis42

17 B. subtilis NCIB 3610 78552 Surfactin variant Cyc Lipo 2.7 × 10−14 16 70 7 3 0.60 (LTQ) B. subtilis42

18 S. roseosporus 78577 A21978 C2 Bcyc Lipo 2.8 × 10−14 24 140 13 2 0.51 (LTQ) S. roseosporus27

19 S. roseosporus 78577 Stenothricin I Bcyc Lipo 3.0 × 10−14 21 90 9 4 0.43 (LTQ) Streptomyces44/27

20 Unknown 78607 Kurstakin 2 Bcyc Lipo 4.2 × 10−14 7 60 7 7 n/a -/47

21 S. roseosporus 78577 A21978 C3 Bcyc Lipo 4.3 × 10−14 18 120 13 2 0.51 (LTQ) S. roseosporus27

22 B. subtilis NCIB 3610 78552 Surfactin variant Cyc Lipo 5.2 × 10−14 16 70 7 1 0.77 (LTQ) B. subtilis42

23 S. roseosporus 78577 Stenothricin III Bcyc Lipo 5.2 × 10−14 23 90 9 1 0.64 (LTQ) Streptomyces44/27

24 S. roseosporus 78577 A21978 C1 Cyc Lipo 5.7 × 10−14 30 135 13 2 0.54 (LTQ) S. roseosporus27

25 B. subtilis  
NCIB 3610

78552 Surfactin variant Bcyc Lipo 1.3 × 10−13 14 65 7 1 0.77 (LTQ) B. subtilis42

26 P. fluorescens 
BW10S2

78552 Massetolide F Bcyc Lipo 1.8 × 10−13 14 90 9 1 qTof P. fluorescens48/49

27 B. licheniformis 78552 Bacitracin B3 Bcyc Peptide 3.5E-13 21 115 11 1 n/a Bacillus39

28 B. subtilis NCIB 3610 78552 Surfactin variant Cyc Lipo 3.9 × 10−13 14 70 7 3 n/a B. subtilis42

29 Unknown 78607 Kurstakin 1 Bcyc Lipo 8.7 × 10−13 7 60 7 7 n/a -/47

30 B. cereus 78552 Kurstakin 4 Bcyc lipo 1.6 × 10−12 7 108 7 5 n/a Bacillus50/47

31 Streptomyces 78557 Lichenysin G5a Cyc Lipo 1.9 × 10−12 16 120 7 3 n/a -/42

32 B. pamilus 78552 Surfactin variant Cyc Lipo 2.7 × 10−12 15 75 7 1 n/a B. subtilis42

33 B. subtilis NCIB 3610 78552 Plipastatin B2 Bcyc Lipo 3.1 × 10−12 25 122 10 1 0.80 (LTQ) B. subtilis45/45

34 S. roseosporus 78577 Stenothricin II Bcyc Lipo 3.4 × 10−12 22 90 9 4 0.40 (LTQ) Streptomyces44/27

35 B. subtilis  
NCIB 3610

78552 Plipastatin 
variant

Bcyc Lipo 3.8 × 10−12 26 115 10 1 n/a B. subtilis45/45

36 B. amyloliquefaciens 
FZB42

78552 Plipastatin A2 Bcyc Lipo 5.8 × 10−12 24 120 10 1 0.75 (LTQ) B. subtilis45/45

37 B. subtilis  
NCIB 3610

78552 Plipastatin A1 Bcyc Lipo 6.8 × 10−12 23 115 10 1 n/a B. subtilis45/45

The precursor mass tolerance was set to 0.05 Da. The ‘organism’ column indicates the species present in one of four GNPS data sets contributing to Spectra4 (if known). GNPS data sets MSV000078552 
(Bacillus and Pseudomonas cultures), MSV000078557 (Chinese marine strains), MSV000078577 (S. roseosporus) and MSV000078607 (Cubist strains) are referred to as data sets 78552, 78557, 
78577 and 78607, respectively. Genomes of the producer organisms are known for the first two data sets but are not available for the last two data sets. B., P. and S. stand for Bacillus, Pseudomonas and 
Streptomyces, respectively. The remaining columns specify the PNP from AntiMarin, structure (cyclic (cyc) or branch cyclic (bcyc)), category (peptide or lipopeptide), P value, shared peak count (SPC) 
score, the number of peaks in the spectrum, the number of generalized peptide bonds, the number of PNP variants identified through analysis of the spectral network, and information about the GNPS 
spectral library search that includes the cosine value and the instrument type (if PNP is present in the spectral library). The final column provides a reference to a paper that contains an image of a 
spectrum from the PNP (if available) and information from that reference about the species producing this PNP (if available). Since for tolaasins and massetolide (rows 2, 3 and 26), spectra in Spectra4 
data set and GNPS spectral library were collected with different instruments (LTQ-FTICR and qTof, respectively), we did not report their cosines. LTQ-FTICR and hybrid FT are abbreviated as LTQ and 
hFT, respectively. All spectra in Spectra4 were collected on ThermoFinnigan LTQ instrument with electrospray ionization, linear ion trap analyzer, CID activation, and electron multiplier detector. Data not 
available are indicated by n/a.
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Dereplication of the GNPS spectral library
To further validate DEREPLICATOR, we analyzed all 81 anno-
tated and manually curated spectra of PNPs in the GNPS spec-
tral library. 40 of 81 PSMs formed by PNPs in this library had low  
P values (below 10−8) that DEREPLICATOR usually considers as 
reliable PSMs (21 of 81 are represented by very low-quality spectra 
with P values above 10−4). Thus, all PSMs reported in this paper 
represent much higher quality spectra than most (41 of 81) spectra 
in the manually curated GNPS spectral library (their P values were 
at most 10−11, three orders of magnitude lower than the median P 
value in the GNPS spectral library).

DEREPLICATOR correctly identified all 40 high-quality spec-
tra in the GNPS spectral library. Even with extremely high P value 
threshold of 10−4, DEREPLICATOR correctly identified 58 of 81 
spectra in the GNPS spectral library. This analysis illustrates that 
the low P value threshold 10−11 that we used in this analysis is con-
servative and that GNPS is likely to contain spectra representing 
thousands more variant PNPs.

Dereplication of short PNPs
As spectra of short peptides have less information content (smaller 
number of fragment ions matching theoretical spectra) than long 
peptides, their P values are typically larger. As the result, a typical 
cutoff for the size of the peptide in proteomics is 7 amino acids 
(6 amide bonds) as otherwise the FDR exceeds the acceptable 
threshold. As illustrated in Supplementray Table 2, for SpectraHigh 
data set with the FDR threshold set to 0%, the default mode of 
DEREPLICATOR identified 6, 11, 19, 51 and 213 PNPs with 2, 3, 4, 
5 and 6 or more bonds, respectively (Supplementary Fig. 5).

To improve identification of short PNPs, we implemented a spe-
cial mode of DEREPLICATOR optimized for identification of short 
PNPs (Online Methods). As the result, the number of identified short 
PNPs with less than 6 bonds increased from 125 to 193 PNPs at FDR 
15%, and the percentage of AntiMarin compounds discovered in the 
SpectraHigh data set (analyzed in Supplementary Table 5) increased 
to 9% for 6 bonds or more, 14% for 5 bonds, 3% for 4 bonds and 2% 
for 3-bond compounds, out of all AntiMarin compounds. Note that 
DEREPLICATOR generates a theoretical spectrum for each PNP 
(including short PNPs) by considering generalized peptide bonds 
that include N-C-O linkage amide bonds as well as C-C-O linkage 
bonds between thiazoles/oxazoles and dehydroalanines/dehydrobu
tyrines and other amino acids (Supplementary Fig. 6).

High-resolution versus low-resolution MS/MS  
for PNP discovery
We searched the SpectraHigh data set against the target AntiMarin data-
base and decoy database of the same size and identified 5,109 PSMs 
(325 PNPs) in the target database and 59 PSMs (42 PNPs) in the decoy 
database at the P value threshold 10−10. Note that, for the same data set, 
the number of identified PNPs in the low-resolution mode reduced 
from 325 to 79 as compared to the high-resolution mode (with 2 PSMs 
and 2 peptides identified in the decoy database in the low-resolution 
mode). P values in the high-resolution mode were typically at least five 
orders of magnitude lower than P values in the low-resolution mode 
(Supplementary Table 6). The fact that the high-resolution spectra 
are vastly superior to the low-resolution spectra with respect to non-
linear PNP identification (fourfold increase in the number of identified 
PNPs) is surprising because the difference between the high-resolution 
and the low-resolution spectra with respect to identification of linear 
peptides in proteomics is not so large (20–30% increase28).

To validate PNPs identified in the SpectraHigh data set, we analyzed 
their distributions between Fungi, Actinomycetales, Pseudomonas 
and Cyanobacteria. According to AntiMarin, most (167 of 180) 
of the PNPs identified from the SpectraFungi data set had been  
first reported from fungal sources. Similarly, most (53 of 64) of 
the peptides identified from the SpectraCyan data set had been first 

reported from cyanobacterial sources. Some of 13 peptides identi-
fied from SpectraFungi data set and forming PSMs with nonfungal 
sources, are clearly not false identifications; for example, all four 
Pseudomonas peptides are variants of massetolide (it is unlikely 
that four spurious PSM originate from the same PNP family). There 
are a few reasons why spectra from SpectraFungi data sets form PSMs 
with peptides from bacterial sources apart from being false PSMs: 
for example, laboratory contamination and morphology misidenti-
fication as many collections contain misidentified organisms.

A similar analysis of SpectraActi and SpectraPseu data sets should be 
done with caution as Bacillus subtilis was added as true positive to 
these samples. As a result, 42 and 22 peptides from Bacillus sources 
were identified in SpectraActi and SpectraPseu, respectively. After 
removing surfactins (typically associated with Bacillus species), 
most of the peptides identified in SpectraActi (31 of 35) and SpectraPseu  
(12 of 18) had Actinomycetales and Pseudonomas sources, respec-
tively (Fig. 3). It further suggests that metabolite origin tracking 
using DEREPLICATOR can become a useful tool for capturing 
contamination or incorrect sample labeling.

Using DEREPLICATOR to optimize sample preparation
The data set SpectraActi36 was collected under three different growth 
conditions and extracted in three different ways. DEREPLICATOR 
can screen the output of the experiment and reveal promising ver-
sus not-so-promising experimental conditions (microorganisms 
can produce different PNPs under different conditions). We used 
DEREPLICATOR to investigate which of nine combinations of 
growth conditions and extraction methods performs the best for 
the PNP discovery. In addition to nine pairs (strain, peptide) shown 
as blue squares in Supplementary Figure 7, DEREPLICATOR also 
found surugamide in 2 of 36 strains bringing the maximum pos-
sible number of pairs (strain, peptide) to 11 for each of nine possible 
conditions. In Supplementary Figure 8 we illustrate that butanol 
extract from A1 agar led to the recovery of 10 of 11 (90%) such 
pairs, making it the most efficient combination.

Cross-validating genome mining and peptidomics results
We further cross-validated PNPs identified by DEREPLICATOR 
from SpectraActi36 data set partitioned into 36 subsets13,29–31. Since 
we had two independent approaches (mass spectrometry and 
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Figure 3 | Number of peptides identified by DEREPLICATOR in 
SpectraHigh data set. The number of unique peptides identified from Fungal, 
Actinomycetales, Pseudomonas or Cyanobacteria spectral data sets 
(horizontal axis), coming from Fungal, Actinomycetales, Cyanobacteria or 
Bacillus sources (color coding). As B. subtilis was added to the extracts from 
the samples SpectraActi and SpectraPseu, 42 and 22 peptides from Bacillus 
sources identified in SpectraActi and SpectraPseu represent contaminants. 
Since Bacillus growth medium is similar to that of Actinomycetes and 
Pseudomonas, samples from Actinomycetes and Pseudomonas often have 
small Bacillus contaminations that originate from pre-autoclaving growth in 
the media.
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genome mining) to check whether a given strain produces a given 
PNP, we could cross-validate the results. At a P value threshold 
of 10−10, DEREPLICATOR identified 9 PNPs in 8 of 36 strains in 
these data sets (grisemycin,  calcium-dependent antibiotic (CDA),  
daptomycin, actinomycin, stendomycin, cyclomarin, salinamide, 
arylomycin and surugamide).

We extracted the biosynthetic gene cluster for 8 of these 9 PNPs 
from the database minimum information about a biosynthetic gene 
cluster (MIBiG)32 (the biosynthetic gene cluster for surugamide 
remains unknown) and performed a BLAST search of the 36 actino-
mycetales against these gene clusters. This search revealed that, in the 
majority of cases, when DEREPLICATOR reported evidence for pro-
duction of a chemotype in a specific strain, genome mining also pre-
dicted the corresponding genotype in the same strain, thus providing 
additional support for both peptides identified by DEREPLICATOR 
and for MIBiG predictions (Supplementary Fig. 7).

DEREPLICATOR found surugamide in four GNPS data sets from 
Streptomyces albus J1074 generated by independent studies13,29,30, and in a 
data set from Streptomyces sp. CNY228. The utility of DEREPLICATOR 
is illustrated by the surprising fact that all previous studies did not iden-
tify surugamides in S. albus J1074, a workhorse strain for Streptomyces 
synthetic biology and heterologous expression33.

Validating surugamide compounds
Surugamide34 and the related molecules champacyclin35 and regi-
namide25 are recently discovered NRPs from marine streptomyces 

that share the same amino acid sequences. Because multiple pieces 
of bioinformatics evidence pointed to production of surugamides in 
S. albus J1074, we set out to validate them experimentally. Although 
the NRP synthetase responsible for synthesizing surugamides 
remains unknown, our analysis identified a putative surugamide-
encoding NRP synthetase using a peptidogenomics approach36 (this 
computational hypothesis needs to be experimentally validated; see 
Supplementary Note for details).

To demonstrate that the molecules corresponding to the iden-
tified spectra are indeed surugamides, we conducted a stable iso-
tope labeling with amino acids in cell culture (SILAC) experiment 
with S. albus J1074 sample and analyzed the resulting spectral net-
work. The SILAC experiments revealed each incorporated amino 
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Figure 4 | Spectral networks illustrating the results of the SILAC 
experiment. (a) Spectral network of surugamides from S. albus J1074 when 
the strain was labeled by 13C6 isoleucines. A path connecting five green 
nodes reveals surugamide A (911.621 Da, observed at m/z of 912.610) and 
four SILAC incorporations into isoleucine with characteristic 6 Da mass 
shifts (surugamide A has four isoleucines, which are observed as addition 
of 6 Da, 12 Da, 18 Da and 24 Da to the precursor ion). Blue nodes reveal 
incorporations in surugamide B with three isoleucines (897.605 Da,  
observed at m/z of 898.611), and purple nodes reveal incorporations in 
a previously unknown surugamide variant with two isoleucines (m/z, 
884.589). (b) Spectral network of surugamides from S. albus J1074 when 
the strain was labeled by 13C6 lysine. Green and blue nodes reveal SILAC 
incorporations into a single lysine in surugamides A and B. Sizes of the 
nodes reflect relative abundance based on total intensity of the ion that 
was fragmented. Width of the edges connecting the nodes reflects the 
similarity (cosine score) between corresponding spectra. As we used a 
stringent cosine threshold 0.7, some related spectra are not connected by 
edges. (c) Structure of surugamide A.
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Figure 5 | Generating theoretical spectra and computing P values of 
PSMs formed by PNPs with various architectures. (a) Generating the 
theoretical spectrum of a branch-cyclic peptide (only 12 of 90 peaks in 
the theoretical spectrum are shown). Nodes and edges in the PNP graph 
are shown as circles and lines. Bridges are shown as red edges. Intensities 
of all peaks in the theoretical spectrum are the same since prediction of 
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each with a different shuffled sequence of amino acids. (c) Constructing 
decoy database of PNPs by randomly rearranging amino acids while 
preserving the architecture of a PNP.
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acid as a characteristic 6 Da mass shift in the corresponding 
mass spectrum.

When we cultured S. albus J1074 in the presence of 13C6 -labeled 
lysine, we observed the addition of 13C6 -labeled lysine for surug-
amide A and surugamide B, supporting that these nodes in the spec-
tral network represent surugamides (Fig. 4a). When we cultured  
S. albus J1074 in the presence of 13C6-labeled isoleucine, we  
observed four additional nodes in the spectral network correspond-
ing to the addition of 13C6-labeled isoleucines (Fig. 4b). A path  
consisting of four edges (Fig. 4b) revealed incorporation of up to 
four 13C6-labeled isoleucines represented by nodes with m/z 918.647, 
924.668, 930.688 and 936.686. Further inspection of these spectra 
revealed incorporation into each of the four isoleucine positions in 
the surugamide A structure (Fig. 4c). For surugamide B with three 
isoleucines, the spectral network revealed addition of up to two 
13C6-labeled isoleucines.

In summary, our SILAC experiments supported the incor-
poration of the four isoleucines and the lysine, together with the 
adenylation domain specificity and location of the epimerase  
domains in the biosynthetic gene cluster that we predicted.  
These experiments, together with the fact that no other gene cluster 
in S. albus J1074 has propensity to produce surugamide, support 
DEREPLICATOR identifications.

As further confirmation that the identified spectrum in the 
extract of S. albus J1074 was surugamide A, we compared the reten-
tion time and the spectrum of m/z 912.627 observed in the extract of 
S. albus J1074 with the previously purified and NMR-spectroscopy-
characterized authentic standard of surugamide A34. Both the reten-
tion time and the spectra of authentic surugamide A and putative 
surugamide A detected in the extract of S. albus J1074 were nearly 
identical (Supplementary Fig. 9). Furthermore, when we added the 
authentic surugamide A to the extract of S. albus J1074, we observed 
a single peak at m/z 912.627, further supporting that the detected 
molecule in the extract of S. albus J1074 was surugamide A.

DISCUSSION
Although molecular networks for PNP discovery recently gained 
a lot of momentum24,37, they require time-consuming manual fol-
low-up analysis to transform cryptic information into identified 
spectra of known compounds or their variants. Thus, the shortage 
of computational tools for PNP analysis is the key bottleneck for 
taking advantage of the wealth of PNPs in various species.

Currently, over 98% of spectra in the GNPS molecular network-
ing infrastructure represent ‘dark matter of metabolomics’38 since 
they evaded all attempts to interpret them8. However, much of this 
dark matter is likely formed by spectra from known molecules 
present in chemical databases. As the result, there is a contrast 
between the large number of known structures of natural products 
and rather small number of their annotated spectra in the GNPS 
spectral library. Therefore, to fully use the potential of the GNPS 
project, the development of algorithms for matching millions (and 
soon billions) of spectra of natural products against chemical data-
bases is needed. In the ‘living data’ concept, public data is periodi-
cally reanalyzed and new findings are relayed back to biologists who 
contributed specific data sets. Although DEREPLICATOR can be 
run as a standalone search through GNPS by generating theoretical 
spectra and computing P-values of PSMs formed by PNPs (Fig. 5),  
it is now also run on each newly deposited public data set in the 
GNPS to perform both standard and variable dereplication, making 
it a part of the ‘GNPS living data’.

Because it is impractical to validate annotations of millions of 
spectra with isolation and NMR spectroscopy analysis, the only fea-
sible way forward is to develop a measure of statistical confidence of 
PSMs with respect to the core structure of PNPs (as MS is blind to ste-
reochemistry). Although such measures are widely used in proteom-
ics and genomics, they are currently missing in the field of natural 

products. To address the challenge of evaluating the statistical signif-
icance of PSMs identified by DEREPLICATOR, we complemented  
it with P values and demonstrated that PSMs with low P values  
represent confident spectral identifications with low FDR.

DEREPLICATOR is to our knowledge the first software tool in 
the field of natural products that is compatible with high-throughput 
analysis of millions of spectra and aimed at reducing the peptidic 
fraction of the ‘dark matter of metabolomics’. Although it has limita-
tions with respect to analyzing short PNPs, it has already increased 
the size of the publicly available GNPS spectral library of PNPs by 
an order of magnitude. We envision that DEREPLICATOR will be 
used to prioritize strains and molecules in natural-product discov-
ery programs, to discover analogs of known natural products, and to  
reveal biosynthetic promiscuity, intermediates and shunt products.

URLs. DEREPLICATOR is available as both a stand-alone tool 
(http://cab.spbu.ru/software/dereplicator) and a web application 
(http://gnps.ucsd.edu). 
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Methods and any associated references are available in the online 
version of the paper.

References
1.	 Li, J.W. & Vederas, J.C. Drug discovery and natural products: end of an  

era or an endless frontier? Science 325, 161–165 (2009).
2.	 Fischbach, M.A. & Walsh, C.T. Antibiotics for emerging pathogens.  

Science 325, 1089–1093 (2009).
3.	 Ling, L.L. et al. A new antibiotic kills pathogens without detectable resistance. 

Nature 517, 455–459 (2015).
4.	 Harvey, A.L., Edrada-Ebel, R. & Quinn, R.J. The re-emergence of natural 

products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 
111–129 (2015).

5.	 Donia, M.S. & Fischbach, M.A. Small molecules from the human microbiota. 
Science 349, 1254766 (2015).

6.	 Medema, M.H. & Fischbach, M.A. Computational approaches to natural 
product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

7.	 Walsh, C.T. A chemocentric view of the natural product inventory.  
Nat. Chem. Biol. 11, 620–624 (2015).

8.	 Wang, M. et al. Sharing and community curation of mass spectrometry data 
with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 
34, 828–837 (2016).

9.	 Vaniya, A. & Fiehn, O. Using fragmentation trees and mass spectral trees for 
identifying unknown compounds in metabolomics. Trends Analyt. Chem. 69, 
52–61 (2015).

10.	Mohimani, H. & Pevzner, P.A. Dereplication, sequencing and identification of 
peptidic natural products: from genome mining to peptidogenomics to 
spectral networks. Nat. Prod. Rep. 33, 73–86 (2016).

11.	Marahiel, M.A., Stachelhaus, T. & Mootz, H.D. Modular peptide  
synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 
2651–2674 (1997).

12.	Arnison, P.G. et al. Ribosomally synthesized and post-translationally  
modified peptide natural products: overview and recommendations for  
a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

13.	Mohimani, H. et al. Automated genome mining of ribosomal peptide  
natural products. ACS Chem. Biol. 9, 1545–1551 (2014).

14.	Smith, C.A. et al. METLIN: a metabolite mass spectral database.  
Ther. Drug Monit. 27, 747–751 (2005).

15.	Yang, J.Y. et al. Molecular networking as a dereplication strategy.  
J. Nat. Prod. 76, 1686–1699 (2013).

16.	Balkovec, J.M. et al. Discovery and development of first in class antifungal 
caspofungin (CANCIDAS®)—a case study. Nat. Prod. Rep. 31, 15–34 (2014).

17.	Blunt, J., Munro, M. & Laatsch, H. Antimarin database. University of 
Canterbury; Christchurch, New Zealand: University of Gottingen; Gottingen, 
Germany, (2007).

18.	Eng, J.K., McCormack, A.L. & Yates, J.R. An approach to correlate tandem 
mass spectral data of peptides with amino acid sequences in a protein 
database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

19.	Tsur, D., Tanner, S., Zandi, E., Bafna, V. & Pevzner, P.A. Identification  
of post-translational modifications by blind search of mass spectra.  
Nat. Biotechnol. 23, 1562–1567 (2005).

http://dx.doi.org/10.1038/nchembio.2219
http://cab.spbu.ru/software/dereplicator
http://gnps.ucsd.edu
http://dx.doi.org/10.1038/nchembio.2219
http://dx.doi.org/10.1038/nchembio.2219


©
 2

01
6 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

8 	 nature chemical biology | Advance online publication | www.nature.com/naturechemicalbiology

article Nature chemical biology doi: 10.1038/nchembio.2219

20.	Ng, J. et al. Dereplication and de novo sequencing of nonribosomal  
peptides. Nat. Methods 6, 596–599 (2009).

21.	 Ibrahim, A. et al. Dereplicating nonribosomal peptides using an informatic 
search algorithm for natural products (iSNAP) discovery. Proc. Natl.  
Acad. Sci. USA 109, 19196–19201 (2012).

22.	Bandeira, N., Tsur, D., Frank, A. & Pevzner, P.A. Protein identification  
by spectral networks analysis. Proc. Natl. Acad. Sci. USA 104, 6140–6145 
(2007).

23.	Bandeira, N. Spectral networks: a new approach to de novo discovery of 
protein sequences and posttranslational modifications. Biotechniques 42, 
687–691 (2007).

24.	Watrous, J. et al. Mass spectral molecular networking of living microbial 
colonies. Proc. Natl. Acad. Sci. USA 109, E1743–E1752 (2012).

25.	Mohimani, H. et al. Multiplex de novo sequencing of peptide antibiotics.  
J. Comput. Biol. 18, 1371–1381 (2011).

26.	Mohimani, H., Kim, S. & Pevzner, P.A. A new approach to evaluating 
statistical significance of spectral identifications. J. Proteome Res. 12, 
1560–1568 (2013).

27.	Liu, W.T. et al. MS/MS-based networking and peptidogenomics guided 
genome mining revealed the stenothricin gene cluster in Streptomyces 
roseosporus. J. Antibiot. (Tokyo) 67, 99–104 (2014).

28.	Kim, S. & Pevzner, P.A. MS-GF+ makes progress towards a universal database 
search tool for proteomics. Nat. Commun. 5, 5277–5286 (2014).

29.	Duncan, K.R. et al. Molecular networking and pattern-based genome mining 
improves discovery of biosynthetic gene clusters and their products from 
Salinispora species. Chem. Biol. 22, 460–471 (2015).

30.	Traxler, M.F., Watrous, J.D., Alexandrov, T., Dorrestein, P.C. & Kolter, R. 
Interspecies interactions stimulate diversification of the Streptomyces 
coelicolor secreted metabolome. MBio 4, e00459–13 (2013).

31.	Penn, K. & Jensen, P.R. Comparative genomics reveals evidence of marine 
adaptation in Salinispora species. BMC Genomics 13, 86 (2012).

32.	Medema, M.H. et al. Minimum information about a biosynthetic gene cluster. 
Nat. Chem. Biol. 11, 625–631 (2015).

33.	Zaburannyi, N., Rabyk, M., Ostash, B., Fedorenko, V. & Luzhetskyy, A. 
Insights into naturally minimised Streptomyces albus J1074 genome.  
BMC Genomics 15, 97 (2014).

34.	Takada, K. et al. Surugamides A-E, cyclic octapeptides with four D-amino 
acid residues, from a marine streptomyces sp.: LC-MS-aided inspection of 
partial hydrolysates for the distinction of D- and L-amino acid residues  
in the sequence. J. Org. Chem. 78, 6746–6750 (2013).

35.	Pesic, A. et al. Champacyclin, a new cyclic octapeptide from Streptomyces 
strain C42 isolated from the Baltic Sea. Mar. Drugs 11, 4834–4857 (2013).

36.	Kersten, R.D. et al. A mass spectrometry-guided genome mining approach 
for natural product peptidogenomics. Nat. Chem. Biol. 7, 794–802 (2011).

37.	Bouslimani, A. et al. Molecular cartography of the human skin surface  
in 3D. Proc. Natl. Acad. Sci. USA 112, E2120–E2129 (2015).

38.	da Silva, R.R., Dorrestein, P.C. & Quinn, R.A. Illuminating the dark matter  
in metabolomics. Proc. Natl. Acad. Sci. USA 112, 12549–12550 (2015).

39.	Govaerts, C. et al. Sequencing of bacitracin A and related minor components 
by liquid chromatography/electrospray ionization ion trap tandem mass 
spectrometry. Rapid Commun. Mass Spectrom. 17, 1366–1379 (2003).

40.	Nutkins, J.C. et al. Structure determination of tolaasin, an extracellular 
lipodepsipeptide produced by the mushroom pathogen, Pseudomonas  
tolaasii Paine. J. Am. Chem. Soc. 113, 2621–2627 (1991).

41.	Bassarello, C. et al. Tolaasins A–E, five new lipodepsipeptides produced by 
Pseudomonas tolaasii. J. Nat. Prod. 67, 811–816 (2004).

42.	Gonzalez, D.J. et al. Microbial competition between Bacillus subtilis  
and Staphylococcus aureus monitored by imaging mass spectrometry. 
Microbiology 157, 2485–2492 (2011).

43.	Peypoux, F. et al. Revised structure of mycosubtilin, a peptidolipid antibiotic 
from Bacillus subtilis. J. Antibiot. (Tokyo) 39, 636–641 (1986).

44.	Hasenböhler, A., Kneifel, H., König, W.A., Zähner, H. & Zeiler, H.J.  
134. Mitteilung. Stenothricin, ein neuer Hemmstoff der bakteriellen 
Zellwandsynthese (Metabolic products of microorganisms. 134. Stenothricin, 
a new inhibitor of the bacterial cell wall synthesis.). Arch. Microbiol. 99, 
307–321 (1974).

45.	Tsuge, K., Ano, T., Hirai, M., Nakamura, Y. & Shoda, M. The genes degQ, 
pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to 
plipastatin production. Antimicrob. Agents Chemother. 43, 2183–2192 (1999).

46.	Sheil, M., Kilby, G., Curtis, J., Bradley, C. & Derrick, P. Low-energy tandem 
mass spectra of the cyclic depipeptide valinomycin—a comparison with 
four-sector tandem mass spectra. J. Mass Spectrom. 28, 574–576 (2005).

47.	Bumpus, S.B., Evans, B.S., Thomas, P.M., Ntai, I. & Kelleher, N.L.  
A proteomics approach to discovering natural products and their biosynthetic 
pathways. Nat. Biotechnol. 27, 951–956 (2009).

48.	Gerard, J. et al. Massetolides A-H, antimycobacterial cyclic depsipeptides 
produced by two pseudomonads isolated from marine habitats. J. Nat. Prod. 
60, 223–229 (1997).

49.	Reybroeck, W. et al. Cyclic lipodepsipeptides produced by Pseudomonas spp. 
naturally present in raw milk induce inhibitory effects on microbiological 
inhibitor assays for antibiotic residue screening. PLoS One 9, e98266 (2014).

50.	Hathout, Y., Ho, Y.P., Ryzhov, V., Demirev, P. & Fenselau, C. Kurstakins:  
a new class of lipopeptides isolated from Bacillus thuringiensis. J. Nat. Prod. 
63, 1492–1496 (2000).

Acknowledgments
We thank M. Wang and N. Bandeira for insightful suggestions on using molecular 
networking and spectral library search, and M. Medema for guidelines on running ant-
iSMASH. The work of H.M., P.D. and P.A.P. was supported by the US National Institutes 
of Health (grant 2-P41-GM103484). P.D. is supported by GM097509. A.G., A.M. and 
P.A.P. were supported by Russian Science Foundation (grant 14-50-00069).

Author contributions
H.M. and A.G. implemented DEREPLICATOR algorithm. H.M., A.G. and A.M.  
designed the webserver. N.G. and L.-F.N. collected and analyzed mass spectrometry data 
and conducted SILAC experiments. A.N. and K.T. purified standard surugamide. P.C.D. 
and P.A.P. designed and directed the work. H.M. and P.A.P. wrote the manuscript.

Competing financial interests
The authors declare competing financial interests: details are available in the online 
version of the paper.

Additional information
Any supplementary information, chemical compound information and source data are 
available in the online version of the paper. Reprints and permissions information is 
available online at http://www.nature.com/reprints/index.html. Correspondence and 
requests for materials should be addressed to P.A.P.

http://dx.doi.org/10.1038/nchembio.2219
http://dx.doi.org/10.1038/nchembio.2219
http://dx.doi.org/10.1038/nchembio.2219
http://dx.doi.org/10.1038/nchembio.2219
http://www.nature.com/reprints/index.html


©
 2

01
6 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature CHEMICAL BIOLOGYdoi:10.1038/nchembio.2219

ONLINE METHODS
Constructing theoretical spectra of PNPs. DER\EPLICATOR generates a 
theoretical spectrum for each PNP by first constructing a PNP graph with 
amino acids as nodes and generalized peptide bonds as edges (Fig. 5a). Here 
generalized peptide bonds include N-C-O linkage amide bonds as well as 
C-C-O linkage bonds common among peptides containing thiazole, oxazole, 
dehydroalanine and dehydrobutyrines (Supplementary Fig. 6). The notion of 
generalized peptide bonds is useful as illustrated by identification of the thia-
zole-oxazole-containing PNP plantazolicin from B. amyloliquefaciens, lanthi-
peptide SapB from S. coelicolor and complex PNPs such as two-ring-containing 
actinomycin from Streptomyces sp. CNS654 (Supplementary Fig. 6).

A generalized peptide bond is called a bridge if removing the bond dis-
connects the PNP graph. Although theoretical spectra of linear peptides are 
generated by removing all bridges (single bonds), spectra of nonlinear peptide 
are generated by removing some bond pairs. A pair of bonds is called a 2-cut 
if none of them are bridges but removing both of them disconnects the graph. 
The theoretical spectrum of a peptide consists of the masses of all subgraphs 
resulting from removal of a bridge or a 2-cut from the PNP graph. We refer to 
the theoretical spectrum of ‘Peptide’ as ‘Spectrum(Peptide)’.

Generating and scoring PSMs. DEREPLICATOR compares each spectrum in 
the spectral data set against each peptide in the chemical database. It further 
forms a PSM if the precursor mass of the spectrum matches the molecular 
mass of the peptide (up to a predefined maximum error). As DEREPLICATOR 
only compares a spectrum against all peptides with similar mass, the number 
of peptides to compare against is much smaller than the PNP database 
size. We scored a PSM formed by Peptide and Spectrum using PepNovo51  
and Mass Spectrometry Generating Function (MS-GF+)28. Note that Spectrum 
represents the experimental mass spectrum, in contrast to Spectrum(Peptide), 
which represents the theoretical spectrum of Peptide.

SPC score(Peptide, Spectrum) was defined as the shared peak count, the 
number of peaks shared between Spectrum(Peptide) and the filtered version 
of Spectrum as defined by PepNovo52,53. Two peaks are shared if their masses 
are within a predefined threshold. Although we used SPC score to summarize 
the statistics of found PSMs, DEREPLICATOR uses a more advanced MSGF 
score28. Admittedly, as ‘score’ was initially developed for linear peptides, it does 
not take into account the specifics of fragmentation of nonlinear peptides. 
However, it performed better than SPC score in our database searches.

Computing P values of PSMs. The PSM scores poorly correlated with P values 
of PSMs23 and thus should not be used for evaluating the statistical significance 
of found PSMs. Indeed, the PSM scores do not remove the bias toward large 
PNPs, PNPs with different architectures (for example, linear versus cyclic), or 
spectra with many peaks. Although methods for evaluating statistical signifi-
cance of linear PSMs are well developed54, they do not extend to the evaluation 
of the statistical significance of nonlinear PSMs.

Estimating P values of PSMs is a difficult instance of a general problem of 
estimating the probabilities of extremely rare events. For linear peptides, the 
generating function approach55 efficiently explores the huge set of all possi-
ble peptides (rather than relatively small set of all peptides in the database23) 
to derive P values for PSMs. MS-DPR algorithm26 for computing P values 
for PSMs formed by nonlinear peptides is motivated by a similar approach 
in particle physics56. MS-DPR evaluates P values based on exploring vari-
ous peptides that are not present in the peptide database and addresses an 
important problem of deciding whether a spectrum was generated by a linear, 
cyclic or branch-cyclic peptide26 (Fig. 5b). This feature (that was missing in 
previous approaches) is important for analyzing large data sets containing 
spectra of PNPs with various structures (linear, cyclic and branch cyclic). 
DEREPLICATOR reports PSMs with P values below a predefined threshold 
and informally defines the P value of a peptide as the minimum P value of all 
PSMs formed by this peptide.

Generating decoy database of PNPs. To compute the FDR, 
DEREPLICATOR uses the concept of decoy database57 and extends it 
to nonlinear peptides. For each PNP in the chemical database (denoted 
Peptides), DEREPLICATOR constructs a decoy PNP with the same topology  

but randomly rearranged amino acids (Fig. 5c). The resulting set of PNPs 
forms a decoy database ‘DecoyPeptides’.

Computing false discovery rate. Given a chemical database Peptides, a spectral 
data set Spectra, and a score threshold T, DEREPLICATOR finds all high-scoring  
PSMs, i.e., all PSMs formed by a peptide P from Peptides and a spectrum S 
from Spectra with MSGF score (P, S) ≥ T. This approach is analogous to the 
peptide identification approach in proteomics. DEREPLICATOR further 
computes P values of all high-scoring PSMs using MS-DPR and forms the 
list of the high-scoring PSMs in the increasing order of their P values. Given  
a P value threshold θ, we defined PSMθ (Peptides, Spectra) as the set of all PSMs 
in this list with P values below θ.

To evaluate the statistical significance of PSMs found in proteomics 
searches, researchers report FDR that estimates the fraction of false PSM 
among all reported PSMs. The target-decoy approach57 for estimating FDR is 
based on generating a decoy proteome and searching all spectra against both 
the target and decoy proteomes. The target-decoy approach further uses the 
number of PSMs found in the decoy proteome to evaluate FDR. As the decoy 
proteome is generated randomly, we expect to find very few PSMs in PSMθ 
(DecoyPeptides, Spectra) for an appropriately chosen P value threshold θ. We 
thus compute the FDR as the ratio of the number of identified PSMs in the 
decoy and target proteomes: 

FDR PSM PSMθ θ θ= | ( , ) | / | ( , )DecoyPeptides Spectra Peptides Spectra ||

Variable dereplication of PNPs via spectral networks. Ideally, each PNP fam-
ily corresponds to a connected component in the spectral network. However, 
spurious edges in spectral networks often connect unrelated spectra from 
different PNP families, making it difficult to perform variable dereplication.  
To minimize the number of spurious edges, DEREPLICATOR uses a stringent 
threshold for defining spectral pairs (edges in the spectral network).

DEREPLICATOR constructs the spectral network of a spectral data set and 
finds connected components in this network (Supplementary Fig. 2). We refer 
to a connected component in a spectral network as a PNP component if one of 
the spectra (nodes) in this component was identified as a statistically signifi-
cant PSM. We further use such PSMs to perform the variable dereplication of 
all spectra in the PNP component25. For each PNP derived via variable derep-
lication, we used MS-DPR to compute its P value. The variable dereplication 
is accepted if the resulting P value does not exceed the threshold θ.

Characteristic shifts in spectral networks. As shown in Supplementary 
Figure 2, many edges in the PNP components correspond to the mass shift  
14 Da (7 Da for doubly charged ions). Nodes separated by the mass shift of 14 Da  
is a common feature of molecular networks that often reveals new variants of 
known compounds27 (for example, substitutions of isoleucine for valine). This 
and other common shifts reveal analogs with amino acid substitutions, trunca-
tions (in the case of branch cyclic peptides), hydrolysis products, differently 
sized lipid side chains, glycosylation, methylation and other variant PNPs27.

For example, the mass shift 14 Da is a characteristic feature of the kurstakin 
family (and many other PNP families) because it connects some known vari-
ants of kurstakins (Supplementary Fig. 2). Thus, as kurstakin 4 is connected 
by the 14 Da shift to a node with mass 920.519 in the spectral network, this 
node likely represents a still unknown variant of kurstakin. Indeed, as spurious 
edges in the connected component have spurious mass shifts, it is extremely 
unlikely that such spurious edges will have mass shifts characteristic for a 
specific PNP family, The node with mass 934.589 (with the mass shift 14 Da  
from the node with mass 920.519) may represent a yet another unknown  
variant of kurstakin.

Identification of short PNPs. In the first approximation, the FDR equals to 
the P value threshold multiplied by the database size to account for multiple-
hypothesis testing54. For example, in practice, to avoid false identifications, 
existing MS/MS database search pipelines often discard all PSMs formed by 
peptides shorter than 7 amino acids while searching bacterial proteomes.  
It does not mean that identification of such peptides is impossible but rather 
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means that researchers have no choice but to consider a few such identifica-
tions (to be within the given FDR) or relax the FDR beyond the traditional 
1–3%. Our computational analysis illustrates that short PNPs are indeed  
difficult to identify via database search owing to low information content 
resulting in high P values.

To improve identification of short PNPs, we compared the characteristics 
of PSMs formed by short PNPs identified in AntiMarin with characteristics of 
PSM identified in the decoy database. This comparison revealed the striking 
difference: most PSM from short AntiMarin peptides originated from spectra 
with charge +1 and isotopic shift 0 Da, whereas most PSM from short decoy 
peptides originated from spectra with charge +2 and +3 and isotopic shifts  
+1 Da, and +2 Da. Thus, although the search for multicharged spectra and 
spectra with nonzero isotopic shifts makes sense for long peptides (it increases 
the number of identified PSMs at the expense of a modest increase in FDR), it 
is counterproductive for short PNPs (for example, we do not expect short PNPs 
to result in spectra with isotopic shifts). We thus modified DEREPLICATOR to 
limit analysis of PSMs formed by short PNPs to only spectra of charge +1 and 
isotopic shift 0 Da. After this change, most decoy PSMs formed by short PNPs 
disappeared (without significantly reducing the number of target PSM formed 
by short PNPs). As the result, at the FDR threshold of 15%, DEREPLICATOR 
identified 47, 36 and 110 compounds with 3, 4 and 5 bonds, respectively.

Experimental validation of PNPs. We performed SILAC experiments to vali-
date some PNPs identified by DEREPLICATOR. S. albus J1074 and S. albus 
ATCC 21838 strains were cultured on ISP2, A1 and R5 agar medium (10 mL) 
with and without 1 mM of 13C6-labeled isoleucine for 6 d at 30 °C. A similar 
experiment was conducted for 13C6 -labeled lysine. Mass spectra from resulting 
samples were acquired in positive ion mode over a mass range of 100−1,500 m/z  
using a QExactive (Thermo Scientific) mass spectrometer with HESI-II probe 
source (Supplementary Note).

Validation of surugamide A. The putative identification of surugamide A, 
annotated by the DEREPLICATOR in S. albus J1074 extract, was validated 
by comparison of the MS/MS spectrum and retention time with an authentic 
standard of surugamide A34, analyzed by liquid chromatography (L)-MS/MS 
under the same analytical conditions. Furthermore, a comigration assay was 
performed to control any matrix effect, by spiking the extract of S. albus J1074 
with the authentic standard of surugamide A. The Supplementary Note 
includes a description of the experimental details.

Revealing the biosynthetic gene cluster for surugamides. The NRP syn-
thetase responsible for synthesizing surugamides remains unknown. Below we 
describe a method that combines peptidogenomics36 with DEREPLICATOR to 
point to the elusive NRP synthetase responsible for surugamide.

Although DEREPLICATOR identified surugamide in multiple Streptomyces 
strains, only one of them (S. albus J1074) was assembled into a single scaffold 
(most other strains were split into over 100 contigs). However, the assem-
bly was performed using a non-reproducible computational protocol, mak-
ing it difficult to estimate the number of missassemblies. We thus faced the  

challenge of finding a surugamide-producing NRP synthetase in a genome 
with potential assembly errors.

Although the NRP synthetase predictor 2 (NRPSpredictor2)58 identified  
36 adenylation domains in S. albus J1074, it is unclear which of them code for 
surugamide. To account for possible assembly artifacts, we focused on triples of 
consecutive adenylation domains in the genome and further added a constraint 
that the genomic distance between consecutive domains in a triple should not 
exceed 20 kb. For each of the 22 triples A1A2A3 of adenylation domains satisfy-
ing this constraint and for each of 8,000 3-mers X1X2X3 of proteinogenic amino 
acids, we computed Score(A1A2A3, X1X2X3) = Score(A1, X1) + Score(A2, X2) + 
Score(A3, X3), where Score(A, X) is the NRPSpredictor2 score of an adenyla-
tion domain A against an amino acid X (the percentage of matches between 
the 10-residue specificity code of the adenylation domain A and the ‘ideal’ 
specificity code of an amino acid X as defined by NRPSpredictor2).

For each of 8,000 3-mers X1X2X3, we found the triple of consecutive adenyla-
tion domains A1A2A3 (among 22 such triples) with maximum score resulting 
in the histogram shown in Supplementary Figure 10. We further defined the 
P value of a 3-mer as the fraction of 3-mers (among 8,000) with this or higher 
score. For example, the P value of Ile,Phe,Leu was 164/8,000 = 0.0205 as its 
score (250) had rank 164 among the 8,000 3-mers.

The amino acid sequences of surugamide A and surugamide B are IAIIKIFL 
and IAVIKIFL, respectively. As shown in Supplementary Figure 10, it was 
somewhat surprising, the P values of all eight 3-mers forming IAIIKIFL were 
below the mean P value 1/2 (similar result held for IAVIKIFL). To quantify this 
statistical bias, we defined the bias of a 3-mer as its P value divided by 2 and 
the bias of a peptide as the product of biases of its 3-mers. The bias of IAIIKIFL 
was 7.4 × 10−7, and the bias of a random peptide was close to 1, implying that 
IAIIKIFL is likely to be coded by the adenylation domains in S. albus J1074 
that generate the high-scoring 3-mers shown by red bars in Supplementary  
Figure 10. Further analysis revealed that these adenylation domains are  
clustered at the genomic location 2863086-2868922 of S. albus J1074.
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